The current pandemic of COVID-19 caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) has raised significant public health concerns. Rapid and accurate testing of SARS-CoV-2 is urgently needed for early detection and control of the disease spread. Here, we present an RT-LAMP coupled glass nanopore digital counting method for rapid detection of SARS-CoV-2. We validated and compared two one-pot RT-LAMP assays targeting nucleocapsid (N) and envelop (E) genes. The nucleocapsid assay was adopted due to its quick time to positive and better copy number sensitivity. For qualitative positive/negative classification of a testing sample, we used the glass nanopore to digitally count the RT-LAMP amplicons and benchmarked the event rate with a threshold. Due to its intrinsic single molecule sensitivity, nanopore sensors could capture the amplification dynamics more rapidly (quick time to positive). We validated our RT-LAMP coupled glass nanopore digital counting method for SARS-CoV-2 detection by using both spiked saliva samples and COVID-19 clinical nasopharyngeal swab samples. The results obtained showed excellent agreement with the gold standard RT-PCR assay. With its integration capability, the electronic nanopore digital counting platform has significant potential to provide a rapid, sensitive, and specific point-of-care assay for SARS-CoV-2.
Keywords: COVID-19; Clinical; RT-LAMP; SARS-CoV-2; Solid-state nanopore.
Copyright © 2021 Elsevier B.V. All rights reserved.