Peptide nucleic acids (PNAs, nucleic acid analogues with a peptide backbone rather than a phosphoribosyl backbone) have emerged as promising chemical agents in antigene or antisense therapeutics, as splicing modulators or in gene editing. Their main benefits, compared to DNA or RNA agents, are their biochemical stability and the lack of negative charges throughout the backbone, leading to negligible electrostatic interaction with the strand with which they are hybridizing. As a result, hybridization of PNA strands with DNA or RNA strands leads to higher binding energies and melting temperatures. A lack of natural transporters, however, necessitates the formation of PNA-containing chimeras or the formulation of nanoparticular cell delivery methods. Here, we set out to explore the progress made in using imaging agents based on PNAs in diagnostic applications and highlight selected developments and challenges.
© 2021 The Authors. Published by American Chemical Society.