Dissolved organic matter (DOM) has been known to inhibit the degradation of trace organic contaminants (TrOCs) in advanced oxidation processes but quantitative understanding is lacking. Adenine (ADN) was selected as a model TrOC due to the wide occurrence of purine groups in TrOCs and the well-documented transient spectra of its intermediate radicals. ADN degradation in the presence of DOM during UV/peroxydisulfate treatment was quantified using steady-state photochemical experiments, time-resolved spectroscopy, and kinetic modeling. The inhibitory effects of DOM were found to include competing for photons, scavenging SO4•- and HO•, and also converting intermediate ADN radicals (ADN(-H)•) back into ADN. Half of the ADN(-H)• were reduced back to ADN in the presence of about 0.2 mgC L-1 of DOM. The quenching rate constants of ADN(-H)• by the 10 tested DOM isolates were in the range of (0.39-1.18) × 107 MC-1 s-1. They showed a positive linear relationship with the total antioxidant capacity of DOM. The laser flash photolysis results of the low-molecular-weight analogues of redox-active moieties further supported the dominant role of antioxidant moieties in DOM in the quenching of ADN(-H)•. The diverse roles of DOM should be considered in predicting the abatement of TrOCs in advanced oxidation processes.
Keywords: adenine; advanced oxidation processes; dissolved organic matter; purine; sulfate radicals; total antioxidant capacity.