Identification of differentially expressed genes associated with precocious puberty by suppression subtractive hybridization in goat pituitary tissues

Anim Biotechnol. 2023 Jun;34(3):619-632. doi: 10.1080/10495398.2021.1990940. Epub 2021 Nov 8.

Abstract

The aim of this study was to identify genes related to precocious puberty expressed in the pituitary of goats at different growth stages by suppression subtractive hybridization (SSH). The pituitary glands from Jining Gray (JG) goats (early puberty) and Liaoning Cashmere (LC) goats (late puberty) at 30, 90, and 180 days were used in this study. To identify differentially expressed genes (DEGs) in the pituitary glands, mRNA was extracted from these tissues, and SSH libraries were constructed and divided into the following groups: juvenile group (30-JG vs. 30-LC, API), puberty group (90-JG vs. 180-LC, BPI), and control group (90-JG vs. 90-LC, EPI). A total of 60, 49, and 58 DEGs were annotated by 222 Gene Ontology (GO) terms and 75 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the DEGs were significantly enriched in GO terms related to 'structural constituent of ribosome', 'translation' and 'GTP binding', and numerous DEGs were also significantly enriched in KEGG terms related to the Jak-STAT signaling and oocyte meiosis pathways. Candidate genes associated with precocious puberty and sexual development were screened from the SSH libraries. These genes were analyzed to determine if they were expressed in the pituitary tissues of the goats at different growth stages and to identify genes that may influence the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we found precocious puberty-related genes (such as PRLP0, EIF5A, and YWHAH) that may be interesting from an evolutionary perspective and that could be investigated for use in future goat breeding programs. Our results provide a valuable dataset that will facilitate further research into the reproductive biology of goats.

Keywords: Goat; differentially expressed genes; hypothalamic-pituitary-gonadal (HPG) axis; precocious puberty; suppression subtractive hybridization (SSH).

MeSH terms

  • Animals
  • Gene Expression Profiling* / veterinary
  • Goats*
  • Pituitary Gland
  • Signal Transduction
  • Subtractive Hybridization Techniques