Association of Sleep-Related Hypoxia With Risk of COVID-19 Hospitalizations and Mortality in a Large Integrated Health System

JAMA Netw Open. 2021 Nov 1;4(11):e2134241. doi: 10.1001/jamanetworkopen.2021.34241.

Abstract

Importance: The influence of sleep-disordered breathing (SDB) and sleep-related hypoxemia in SARS-CoV-2 viral infection and COVID-19 outcomes remains unknown. Controversy exists regarding whether to continue treatment for SDB with positive airway pressure given concern for aerosolization with limited data to inform professional society recommendations.

Objective: To investigate the association of SDB (identified via polysomnogram) and sleep-related hypoxia with (1) SARS-CoV-2 positivity and (2) World Health Organization (WHO)-designated COVID-19 clinical outcomes while accounting for confounding including obesity, underlying cardiopulmonary disease, cancer, and smoking history.

Design, setting, and participants: This case-control study was conducted within the Cleveland Clinic Health System (Ohio and Florida) and included all patients who were tested for COVID-19 between March 8 and November 30, 2020, and who had an available sleep study record. Sleep indices and SARS-CoV-2 positivity were assessed with overlap propensity score weighting, and COVID-19 clinical outcomes were assessed using the institutional registry.

Exposures: Sleep study-identified SDB (defined by frequency of apneas and hypopneas using the Apnea-Hypopnea Index [AHI]) and sleep-related hypoxemia (percentage of total sleep time at <90% oxygen saturation [TST <90]).

Main outcomes and measures: Outcomes were SARS-CoV-2 infection and WHO-designated COVID-19 clinical outcomes (hospitalization, use of supplemental oxygen, noninvasive ventilation, mechanical ventilation or extracorporeal membrane oxygenation, and death).

Results: Of 350 710 individuals tested for SARS-CoV-2, 5402 (mean [SD] age, 56.4 [14.5] years; 3005 women [55.6%]) had a prior sleep study, of whom 1935 (35.8%) tested positive for SARS-CoV-2. Of the 5402 participants, 1696 were Black (31.4%), 3259 were White (60.3%), and 822 were of other race or ethnicity (15.2%). Patients who were positive vs negative for SARS-CoV-2 had a higher AHI score (median, 16.2 events/h [IQR, 6.1-39.5 events/h] vs 13.6 events/h [IQR, 5.5-33.6 events/h]; P < .001) and increased TST <90 (median, 1.8% sleep time [IQR, 0.10%-12.8% sleep time] vs 1.4% sleep time [IQR, 0.10%-10.8% sleep time]; P = .02). After overlap propensity score-weighted logistic regression, no SDB measures were associated with SARS-CoV-2 positivity. Median TST <90 was associated with the WHO-designated COVID-19 ordinal clinical outcome scale (adjusted odds ratio, 1.39; 95% CI, 1.10-1.74; P = .005). Time-to-event analyses showed sleep-related hypoxia associated with a 31% higher rate of hospitalization and mortality (adjusted hazard ratio, 1.31; 95% CI, 1.08-1.57; P = .005).

Conclusions and relevance: In this case-control study, SDB and sleep-related hypoxia were not associated with increased SARS-CoV-2 positivity; however, once patients were infected with SARS-CoV-2, sleep-related hypoxia was an associated risk factor for detrimental COVID-19 outcomes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • COVID-19* / complications
  • COVID-19* / mortality
  • COVID-19* / therapy
  • Case-Control Studies
  • Cause of Death*
  • Continuous Positive Airway Pressure
  • Delivery of Health Care, Integrated
  • Extracorporeal Membrane Oxygenation
  • Female
  • Florida
  • Hospital Mortality
  • Hospitalization*
  • Humans
  • Hypoxia
  • Logistic Models
  • Male
  • Middle Aged
  • Odds Ratio
  • Ohio
  • Respiration, Artificial
  • Risk Factors
  • SARS-CoV-2
  • Severity of Illness Index*
  • Sleep
  • Sleep Apnea Syndromes / complications*
  • Sleep Apnea Syndromes / pathology
  • Sleep Apnea Syndromes / therapy