The characteristic ionic currents of nucleotide kmers are commonly used in analyzing nanopore sequencing readouts. We present a graph convolutional network-based deep learning framework for predicting kmer characteristic ionic currents from corresponding chemical structures. We show such a framework can generalize the chemical information of the 5-methyl group from thymine to cytosine by correctly predicting 5-methylcytosine-containing DNA 6mers, thus shedding light on the de novo detection of nucleotide modifications.
© 2021. The Author(s).