Purpose: Cyclooxygenase-2 (COX-2) is a target for inflammation and colorectal cancer (CRC). This study evaluated the COX-2 neuro-PET radiopharmaceutical, [11C]MC1, in CRC xenograft mice.
Procedures: [11C]MC1 was evaluated in ICRscid mice with HT-29 and HCT-116 CRC xenografts, with high and low COX-2 expression, respectively, by immunohistochemistry, cellular uptake, dynamic PET/MR imaging, ex vivo biodistribution, and radiometabolite analysis.
Results: HT-29 xenografts were well visualized with [11C]MC1 using PET/MR. Time-activity curves revealed steady tumor radioactivity accumulation in HT-29 xenografts that plateaued from 40 to 60 min (3.07 ± 0.65 %ID/g) and was significantly reduced by pre-treatment with MC1 or celecoxib (1.62 ± 0.29 and 1.18 ± 0.21 %ID/g, respectively, p = 0.045 and p = 0.005). Radiometabolite analysis showed that [11C]MC1 accounted for >90 % of tumor radioactivity, with <10 % in plasma, at 40 min post-injection of the radiotracer.
Conclusions: [11C]MC1 is a promising PET imaging agent for COX-2 in CRC and translation for cancer research should be considered.
Keywords: COX-2; Carbon-11; Colorectal cancer; Cyclooxygenase-2; Inflammation; PET.
© 2021. World Molecular Imaging Society.