Infiltrating immune cells in the tumor microenvironment (TME) influence tumor progression and patient prognosis, making them attractive therapeutic targets for immunotherapy research. A deeper understanding of immune cell distributions in the TME in hepatocellular carcinoma (HCC) is needed to identify interactions among different immune cell types that might impact the effectiveness of potential immunotherapies. We performed multiplex immunohistochemistry using a tissue microarray of samples from 302 patients with HCC to elucidate the spatial distributions of immune cell subpopulations (CD3+ , CD4+ , CD8+ , CD66b+ , and CD68+ ) in HCC and normal liver tissues. We analyzed the associations between different immune subpopulations using Pearson's correlation. G(r) functions, K(r) functions and Euclidean distance were applied to characterize the bivariate distribution patterns among the immune cell types. Cox regression and Kaplan-Meier analysis were used to evaluate the associations between tumor infiltration by different immune cells and patient outcomes after curative surgery. We also analyzed the relationship between the spatial distribution of different immune cell subpopulations with HCC patient prognosis. We found that the immune cell spatial distribution in the HCC TME is heterogeneous. Our study provides a theoretical basis for HCC immunotherapy.
Keywords: hepatocellular carcinoma; immune cell subpopulations; multiplex immunohistochemistry; prognosis; tumor microenvironment.
© 2021 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.