Dexamethasone is a synthesised glucocorticoid that is widely used in the treatment of various inflammatory skin conditions. Novel trilayer dissolving microneedle arrays were manufactured to assist dexamethasone delivery via the skin. Both transdermal delivery and intradermal delivery of dexamethasone can be achieved this way. Additionally, we proposed a novel strategy of co-formulating dexamethasone and its pro-drug dexamethasone sodium phosphate into the same dissolving microneedle array, with a view to achieving a fast onset of action and also sustained treatment. Here, a 3D-printing technique was employed, for the first time, to fabricate a baseplate for these microneedle arrays. The 3D-printed baseplates provided strong support to aid the insertion of the drug-encapsulated tips. A simple and rapid HPLC method was developed, and validated, to separate and quantify dexamethasone and dexamethasone sodium phosphate in the same sample. Ex-vivo studies found that these trilayer dissolving microneedle arrays could achieve a delivery efficiency of over 40% in intradermal delivery and over 50% in transdermal delivery. Trilayer microneedle-assisted delivery of this glucocorticoid provided a promising alternative to oral and parenteral routes of dexamethasone administration.
Keywords: Biphasic release; Dexamethasone; Dexamethasone sodium phosphate; HPLC; Microneedle; Sustained release.
Copyright © 2021 Elsevier B.V. All rights reserved.