Scope: Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in preterm infants, occurring more often in formula-fed infants than in breastfed infants. Recent animal studies have shown that cells in fresh breast milk survive in the newborns' digestive tract. However, no clinical studies have been conducted on the effects of human milk cells, and their biological roles in the infants' intestines remain unexplored.
Methods and results: Twenty premature infants are enrolled. Cells from fresh milk of their own mothers are enriched and fed to infants with Bell's Stage I NEC once a day for 7 days since the onset of NEC. Fecal samples are collected at enrollment and 2 weeks later. Fecal sphingolipids are observed to be enriched in NEC patients and positively correlated with calprotectin levels. After intervention with enriched human milk cells, inflammation-associated sphingolipids and microbiome profiles are altered and resembled those of the controls.
Conclusion: These preliminary findings reveal the potential impacts of enriched human milk cells on premature infants with Bell's Stage I NEC and provide insight into the roles of fecal sphingolipid metabolism in the neonates' intestinal inflammation. However, the limited sample size of the study indicates the need for further investigation.
Keywords: fecal calprotectin; gut microbiome; human milk cell; intestinal metabolome; necrotizing enterocolitis.
© 2021 Wiley-VCH GmbH.