We have recently demonstrated supervised deep learning methods for rapid generation of radiofrequency pulses in magnetic resonance imaging (https://doi.org/10.1002/mrm.27740, https://doi.org/10.1002/mrm.28667). Unlike the previous iterative optimization approaches, deep learning methods generate a pulse using a fixed number of floating-point operations - this is important in MRI, where patient-specific pulses preferably must be produced in real time. However, deep learning requires vast training libraries, which must be generated using the traditional methods, e.g., iterative quantum optimal control methods. Those methods are usually variations of gradient descent, and the calculation of the gradient of the performance metric with respect to the pulse waveform can be the most numerically intensive step. In this communication, we explore various ways in which the calculation of gradients in quantum optimal control theory may be accelerated. Four optimization avenues are explored: truncated commutator series expansions at zeroth and first order, a novel midpoint truncation scheme at first order, and the exact complex-step method. For the spin systems relevant to MRI, the first-order midpoint truncation is found to be sufficiently accurate, but also significantly faster than the machine precision gradient. This makes the generation of training databases for the machine learning methods considerably more realistic.
Keywords: 2D RF; DeepControl; MRI; Optimal Control; Optimization Gradients.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.