During moments involving selective attention, the thalamus orchestrates the preferential processing of prioritized information by coordinating rhythmic neural activity within a distributed frontoparietal network. The timed release of neuromodulators from subcortical structures dynamically sculpts neural synchronization in thalamocortical networks to meet current attentional demands. In particular, noradrenaline modulates the balance of cortical excitation and inhibition, as reflected by thalamocortical alpha synchronization (~8-12 Hz). These neuromodulatory adjustments facilitate the selective processing of prioritized information. Thus, by disrupting effective rhythmic coordination in attention networks, age-related locus coeruleus (LC) degeneration can impair higher levels of neural processing. In sum, findings across different levels of analysis and modalities shed light on how the noradrenergic modulation of neural synchronization helps to shape selective attention.
Keywords: cognitive aging; locus coeruleus; noradrenaline; norepinephrine; rhythmic neural activity; selective attention.
Copyright © 2021 Elsevier Ltd. All rights reserved.