PDGFRβ Recognizes and Binds Bacteria to Activate Src/Stat Pathway in Oysters

J Immunol. 2021 Dec 15;207(12):3060-3069. doi: 10.4049/jimmunol.2100486. Epub 2021 Nov 19.

Abstract

The Stat signaling pathway plays important roles in mediating the secretions of a large number of cytokines and growth factors in vertebrates, which is generally triggered by the growth factor receptor, cytokine receptor, G protein coupled receptor, and receptor protein tyrosine kinase. In the current study, a platelet-derived growth factor receptor (defined as CgPDGFRβ) was identified from the Pacific oyster Crassostrea gigas, with a signal peptide, three Ig domains, a transmembrane domain, and an intracellular Ser/Thr/Tyr kinase domain. The two N-terminal Ig domains of CgPDGFRβ showed relatively higher binding activity to Gram-negative bacteria and LPS compared with Gram-positive bacteria and peptidoglycan. Upon binding bacteria, CgPDGFRβ in hemocytes formed a dimer and interacted with protein tyrosine kinase CgSrc to induce the phosphorylation of CgSrc at Tyr416. The activated CgSrc interacted with CgStat to induce the translocation of CgStat into the nucleus of hemocytes, which then promoted the expressions of Big defensin 1 (CgBigdef1), IL17-4 (CgIL17-4), and TNF (CgTNF1). These findings together demonstrated that the Src/Stat signaling was activated after the binding of CgPDGFRβ with bacteria to induce the expressions of CgBigdef1, CgIL17-4, and CgTNF1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteria
  • Crassostrea*
  • Cytokines
  • Hemocytes / microbiology
  • Immunity, Innate*

Substances

  • Cytokines