Mycobacterium simiae has been reported to be the most prevalent species of Nontuberculous mycobacteria (NTM) in many countries. As both phenotypic and molecular detection of M. simiae and other NTMs have limitations, finding an accurate, fast, and low-cost diagnostic method is critical for the management of infections. Here, we report the development of a new type of label-free electrochemical biosensor using a gold electrode decorated with l-cysteine/PAMAM dendrimer for specific targeting of M. simiae ITS sequence. DNA hybridization was monitored by measuring changes in the free guanine electrical signal with changing ssDNA target concentrations by differential pulse voltammetry (DPV) method. Response surface methodology (RSM) was applied for the optimization of variables affecting biosensor response. Under optimal conditions, the biosensor revealed a wide linear range from 10-14 M to 10-6 M and a detection limit of 1.40 fM. The fabricated biosensor showed an excellent selectivity to M. simiae in the presence of other similar pathogenic bacteria. Moreover, experimental results confirmed that this biosensor exhibited great precision and high reproducibility, hence provides a low-cost, label-free, and faster detection analysis, representing a novel strategy in detecting other NTMs.
Keywords: Electrochemical DNA biosensor; Label-free; Mycobacterium simiae; Response surface methodology; Voltammetry.
Copyright © 2021 Elsevier B.V. All rights reserved.