Density Functional Theory Analysis of Structural, Electronic, and Optical Properties of Mixed-Halide Orthorhombic Inorganic Perovskites

ACS Omega. 2021 Nov 5;6(45):30752-30761. doi: 10.1021/acsomega.1c04806. eCollection 2021 Nov 16.

Abstract

Inorganic metal-halide perovskites hold a lot of promise for solar cells, light-emitting diodes, and lasers. A thorough investigation of their optoelectronic properties is ongoing. In this study, the accurate modified Becke Johnson generalized gradient approximation (mBJ-GGA) method without/with spin orbital coupling (SOC) implemented in the WIEN2k code was used to investigate the effect of mixed I/Br and Br/Cl on the electronic and optical properties of orthorhombic CsPb(I1-x Br x )3 and CsPb(Br1-x Cl x )3 perovskites, while the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) method was used to investigate their structural properties. The calculated band gap (E g) using the mBJ-GGA method was in good agreement with the experimental values reported, and it increased clearly from 1.983 eV for CsPbI3 to 2.420 and 3.325 eV for CsPbBr3 and CsPbCl3, respectively. The corrected mBJ + SOC E g value is 1.850 eV for CsPbI3, which increased to 2.480 and 3.130 eV for CsPbBr3 and CsPbCl3, respectively. The calculated photoabsorption coefficients show a blue shift in absorption, indicating that these perovskites are suitable for optical and optoelectronic devices.