We investigated the use of photonic crystals with different opto-geometrical parameters for light extraction from AlGaInP/InGaP MQW color converters. Blue-to-red and green-to-red color conversions were demonstrated using room-temperature photoluminescence with excitation wavelengths at 405nm and 514nm. Complete, compact and highly directional light extraction was demonstrated. 3D-FDTD and a herein-developed phenomenological model derived from the standard coupled-mode theory were used to analyze the results. The highest light extraction gains were ∼8 times better than unpatterned reference structures, which were paired with short extraction lengths (between 2µm and 6µm depending on the acceptance angle) and directional light emission for square lattice of nanopillars with a lattice period of 400nm. The design guidelines set in this work could pave the way for the use of inorganic MQW epi-layer color converters to achieve full color microdisplays on a single wafer.