Tunable terahertz metasurface platform based on CVD graphene plasmonics

Opt Express. 2021 Nov 22;29(24):40594-40605. doi: 10.1364/OE.444573.

Abstract

Graphene plasmonics provides a powerful means to extend the reach of metasurface technology to the terahertz spectral region, with the distinct advantage of active tunability. Here we introduce a comprehensive design platform for the development of THz metasurfaces capable of complex wavefront manipulation functionalities, based on ribbon-shaped graphene plasmonic resonators combined with metallic antennas on a vertical cavity. Importantly, this approach is compatible with the electrical characteristics of graphene grown by chemical vapor deposition (CVD), which can provide the required mm-scale dimensions unlike higher-mobility exfoliated samples. We present a single device structure that can be electrically reconfigured to enable multiple functionalities with practical performance metrics, including tunable beam steering and focusing with variable numerical aperture. These capabilities are promising for a significant impact in a wide range of THz technologies for sensing, imaging, and future wireless communications.