We proposed an one-dimensional layer-stacked photonic crystal using anisotropic materials to realize ideal type-II Weyl points. The topological transition from Dirac to Weyl points can be clearly observed by tuning the twist angle between layers. Also, on the interface between the photonic type-II Weyl material and air, gapless surface states have been demonstrated in an incomplete bulk bandgap. By breaking parameter symmetry, these ideal type-II Weyl points would transform into the non-ideal ones, exhibiting topological surface states with single group velocity. Our work may provide a new idea for the realization of photonic semimetal phases by utilizing naturally anisotropic materials.