Background: To assess whether glass-ceramic shade, thickness and translucency affect degree of conversion (DC) and Knoop microhardness (KHN) of resin cements photoactivated using light-emitting diode (LED) or quartz-tungsten-halogen (QTH) units.
Material and methods: Glass-ceramic blocks were cut (2, 3 and 4mm) and sintered. For DC FT Raman spectroscopy (n=3), film specimens of cements (RelyX ARC, U200, Veneer, C&B) were obtained. For KHN test (n=3), cements were inserted in cylindrical matrix and covered by polyester strip. Specimens were photoactivated (30s) using LED or QTH according to each group: direct photoactivation (DP), interposing ceramic specimens or no photoactivation (NP). Data were analysed by ANOVA and Tukey's test, Kruskal-Wallis and Dunn's tests (p<0.05).
Results: Ceramic features had significant effect on DC of RelyX ARC, U200 and Veneer (p<0.0017). Light source had no effect (p=0.9512). C&B and Veneer had higher DC, followed by dual cements. NP dual cements showed the lowest DC. For KHN, ceramic shade (p=0.1717) and light source (p=0.1421) were not significant, but ceramic translucency, thickness and resin cement were significant (p=0.0001). KHN was higher for U200 followed by ARC, and lowest for Veneer.
Conclusions: DC was affected by ceramic shade, translucency and thickness. KHN was dependent on ceramic translucency and thickness. Higher DC and KHN were achieved for dual-cured cements photoactivated through 2mm-thick low translucent or 3mm-thick high translucent glass-ceramic. Key words:Cementation, composite resin cements, dental curing lights, glass ceramics.
Copyright: © 2021 Medicina Oral S.L.