The psychopharmacological properties of the psychedelic drug lysergic acid diethylamide (LSD) have attracted the interest of several generations of scientists. While further explorations involving novel LSD-type compounds are needed to assess their potential as medicinal drugs, the emergence of novel derivatives as recreational drugs has also been observed. 1-Valeroyl-LSD (also known as 1-valeryl-LSD, 1-pentanoyl-LSD, 1V-LSD, or "Valerie") is a new N1 -acylated LSD derivative that recently appeared on the online market, and it could be viewed as a higher homolog of ALD-52, 1P-LSD, and 1B-LSD. The present study included the analytical characterization and involved various methods of mass spectrometry (MS), gas and liquid chromatography (GC and LC), nuclear magnetic resonance (NMR) spectroscopy, GC-solid-state infrared (GC-sIR) analysis, and Raman spectroscopy. The in vivo activity of 1V-LSD was assessed using the mouse head-twitch response (HTR), a 5-HT2A -mediated head movement that serves as a behavioral proxy in rodents for human hallucinogenic effects. Similar to LSD and other psychedelic drugs, the HTR induced by 1V-LSD was dose dependent, and the median effective dose for 1V-LSD was 373 nmol/kg, which was about a third of the potency of LSD (ED50 = 132.8 nmol/kg). Lysergamides containing the N1 -substituent typically act as weak partial agonists at the 5-HT2A receptor and are believed to serve as prodrugs for LSD. 1V-LSD is also likely to be hydrolyzed to LSD and serve as a prodrug, but studies to assess the biotransformation and receptor pharmacology of 1V-LSD should be performed to fully elucidate its mechanism of action.
Keywords: 5-HT2A receptor; LSD; lysergamides; new psychoactive substances; psychedelics.
© 2021 John Wiley & Sons, Ltd.