Effect of temperature and humidity on coronavirus infection in Pakistan

Gene Rep. 2022 Mar:26:101441. doi: 10.1016/j.genrep.2021.101441. Epub 2021 Nov 20.

Abstract

Ongoing Coronavirus epidemic (COVID-19) identified first in Wuhan, China posed huge impact on public health and economy around the globe. Both cough and sneeze based droplets or aerosols encapsulated COVID-19 particles are responsible for airborne transmission of this virus and caused an unexpected escalation and high mortality worldwide. Current study intends to investigate the correlation of COVID-19 epidemic with meteorological parameters, particularly temperature and humidity. A data set of Epidemiological data of COVID-19 for highly infected provinces of Pakistan was collected from the official website of (https://www.covid.gov.pk/) and weather data was collected from (https://www.timeanddate.com/) during the time period of 1st March to 30th September 2020. The GrapPad prism 5 Software was used to calculate the mean and standard error of mean (SEM). In the current study the incident of daily covid cases is recorded higher in the month of June while the less number of case were reported in the month of May as compared to the other months (April, May, June, July, September and August) in the four province of Pakistan. We also find out that the incident of Covid19 were high at higher temperature (like the average temperature in the month of June 37 °C) while less cases were reported in May the average temperature was 29.5 °C. Furthermore the incident of covid cases were less reported at low humidity while more intendant with high humidity. Pearson's (r) determine the strength of the relationship between the variables. Pearson's correlation coefficient test employed for data analysis revealed that temperature average (TA) and average humidity is not a significant correlated with COVID-19 pandemic. The results obtained from the current analysis for selected parameters indirect correlation of COVID-19 transmission with temperature variation, and humidity. In the present study association of parameters is not correlated with COVID-19 pandemic, suggested need of more strict actions and control measures for highly populated cities. These findings will be helpful for health regulatory authorities and policy makers to take specific measures to combat COVID-19 epidemic in Pakistan.

Keywords: COVID-19; COVID-19, Coronavirus Disease 2019; Pakistan; Pandemic; SARS; SARS, Severe acute respiratory syndrome; SEM, Standard error of mean; TA, Temperature average; Virus; WHO, World Health Organization.