Semiconductor yarns with unique functional characteristics have great potential applications in next-generation electronic devices. However, scalable inorganic semiconductor yarns with excellent mechanical and electrical properties, and environmental stability have not been discovered. In this study, we explored a unique fluid-spinning strategy to obtain a series of scalable inorganic semiconductor yarns including neat and hybrid semiconductor yarns. Different from the conventional yarn spinning strategy through a mechanical motor, we utilized the fluid force from the triple-phase interface to assemble and twist inorganic nanofiber building blocks simultaneously, and eventually obtained highly oriented inorganic nanowire-based semiconductor yarns. The obtained semiconductor yarns showed an excellent flexibility (curvature exceeding 2 cm-1) and mechanical strength (tensile strength of 443 MPa) because of their highly oriented hierarchical nanostructures, which make them coiling able with highly twisted insertion. Additionally, coiled yarns were obtained by combining the host core material and functional guest sheath in a fluid-spinning process, which are flexible in deep cryogenic temperature owing to the pure inorganic building blocks (26.28% tensile strain in liquid nitrogen). In particular, inorganic yarn-based electrochromic actuators can obtain as high as 15.3% tensile stroke and 0.82 J g-1 work capacity by electrochemical charge injection-associated multicolor switching.