Hemodynamic and metabolic changes during hypercapnia with normoxia and hyperoxia using pCASL and TRUST MRI in healthy adults

J Cereb Blood Flow Metab. 2022 May;42(5):861-875. doi: 10.1177/0271678X211064572. Epub 2021 Dec 1.

Abstract

Blood oxygenation level-dependent (BOLD) or arterial spin labeling (ASL) MRI with hypercapnic stimuli allow for measuring cerebrovascular reactivity (CVR). Hypercapnic stimuli are also employed in calibrated BOLD functional MRI for quantifying neuronally-evoked changes in cerebral oxygen metabolism (CMRO2). It is often assumed that hypercapnic stimuli (with or without hyperoxia) are iso-metabolic; increasing arterial CO2 or O2 does not affect CMRO2. We evaluated the null hypothesis that two common hypercapnic stimuli, 'CO2 in air' and carbogen, are iso-metabolic. TRUST and ASL MRI were used to measure the cerebral venous oxygenation and cerebral blood flow (CBF), from which the oxygen extraction fraction (OEF) and CMRO2 were calculated for room-air, 'CO2 in air' and carbogen. As expected, CBF significantly increased (9.9% ± 9.3% and 12.1% ± 8.8% for 'CO2 in air' and carbogen, respectively). CMRO2 decreased for 'CO2 in air' (-13.4% ± 13.0%, p < 0.01) compared to room-air, while the CMRO2 during carbogen did not significantly change. Our findings indicate that 'CO2 in air' is not iso-metabolic, while carbogen appears to elicit a mixed effect; the CMRO2 reduction during hypercapnia is mitigated when including hyperoxia. These findings can be important for interpreting measurements using hypercapnic or hypercapnic-hyperoxic (carbogen) stimuli.

Keywords: Carbogen; cerebral metabolic rate of oxygen; cerebral venous oxygenation; hypercapnia; hyperoxia.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain / metabolism
  • Carbon Dioxide* / metabolism
  • Cerebrovascular Circulation / physiology
  • Hemodynamics
  • Humans
  • Hypercapnia
  • Hyperoxia* / metabolism
  • Magnetic Resonance Imaging
  • Oxygen / metabolism
  • Oxygen Consumption / physiology

Substances

  • Carbon Dioxide
  • Oxygen