The present study was designed to fabricate wheat germ oil nanoemulsions (WGO-NEs) by using two different emulsifiers in their physical properties and their chemical structures which were Triton X-100 and Lecithin to form Triton X-100 coated WGO nanoemulsion (WGOT-NE) and Lecithin coated WGO nanoemulsion (WGOL-NE) then characterized them using Transmission Electron Microscopy, Scanning Electron Microscopy (SEM) and Dynamic light scattering (DLS) and study their biological effects against cisplatin-induced nephrotoxicity. The experimental study was performed on fifty male albino rats divided into 5 groups. healthy group, group injected with a single dose of cisplatin (CP), group injected with a single dose of CP then received WGO orally, group injected with a single dose of CP then received WGOL-NE and group injected a single dose of CP then received WGOT-NE. The results showed that the shape of the particles of WGOL-NE is spherical with poorly aggregation and average particle size is 161.2 nm while WGOT-NE is nearly spherical but with noticeable agglomeration and an average particle size of 194.6 nm. In the experimental study, the results showed involvement of cisplatin in nephrotoxicity through disturbance kidney function and histological examination of the cortical tissue of the kidney and increased biochemical markers related to inflammation, oxidative stress, and apoptotic pathway. Otherwise, treatment with WGO, WGOT-NE, and WGOL-NE increased a significant amelioration in all the biochemical markers. In conclusion, WGOT-NE and WGOL-NE were more efficient than the native WGO in attenuating the kidney damage induced by CP although WGOL-NE showed the nearest results to the control group.
Keywords: Cisplatin; Nanoemulsions; Nephrotoxicity; Wheat germ oil.
Copyright © 2021 Elsevier Inc. All rights reserved.