Chirality is determinant for sphingosine biofunctions and pharmacological activity, yet the reasons for the biological chiral selection are not well understood. Here, we characterized the intra- and intermolecular interactions at the headgroup of the cytotoxic anhydrophytosphingosine jaspine B, revealing chirality-dependent correlations between the puckering of the ring core and the formation of amino-alcohol hydrogen bond networks, both in the monomer and the monohydrate. Following the specific synthesis of a shortened 3-carbon side-chain molecule, denoted jaspine B3, six different isomers were observed in a jet expansion using broadband (chirped-pulsed) rotational spectroscopy. Additionally, a single isomer of the jaspine B3 monohydrate was observed, revealing the insertion of water in between the hydroxy and amino groups and the formation of a network of O-H···N-H···Oring hydrogen bonds. The specific jaspine B3 stereochemistry thus creates a double-faced molecule where the exposed lone-pair electrons may easily catalyze the formation of intermolecular aggregates and determine the sphingosine biological properties.
Keywords: Jet spectroscopy; Microsolvation; Noncovalent interactions; Ring-puckering; Rotational Spectroscopy; Sphingosines.
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.