A Reconstructed Cu2 P2 O7 Catalyst for Selective CO2 Electroreduction to Multicarbon Products

Angew Chem Int Ed Engl. 2022 Jan 26;61(5):e202114238. doi: 10.1002/anie.202114238. Epub 2021 Dec 10.

Abstract

The electrochemical CO2 reduction reaction (CO2 RR) over Cu-based catalysts shows great potential for converting CO2 into multicarbon (C2+ ) fuels and chemicals. Herein, we introduce an A2 M2 O7 structure into a Cu-based catalyst through a solid-state reaction synthesis method. The Cu2 P2 O7 catalyst is electrochemically reduced to metallic Cu with a significant structure evolution from grain aggregates to highly porous structure under CO2 RR conditions. The reconstructed Cu2 P2 O7 catalyst achieves a Faradaic efficiency of 73.6 % for C2+ products at an applied current density of 350 mA cm-2 , remarkably higher than the CuO counterparts. The reconstructed Cu2 P2 O7 catalyst has a high electrochemically active surface area, abundant defects, and low-coordinated sites. In situ Raman spectroscopy and density functional theory calculations reveal that CO adsorption with bridge and atop configurations is largely improved on Cu with defects and low-coordinated sites, which decreased the energy barrier of the C-C coupling reaction for C2+ products.

Keywords: CO2 electroreduction; Cu2P2O7; Electrochemical in situ reconstruction; Multicarbon products.