Reactions of the N,C,N-chelated organogallium amide LGa(NEt2)2 (1), where L is {2,6-(Me2NCH2)2C6H3}-, with organoboronic acids RB(OH)2 yielded molecular gallium boroxines LGa(O3B2R2) (2: R = OH, 3: R = Ph, 4: R = 4-MeO-C6H4, 5: R = 4-CHO-C6H4, 6: R = Fc), neutral analogues of gallaborates. The molecular structures revealed the presence of a six-membered central GaB2O3 ring. The film forming properties of 5 allowed the deposition of transparent thin films by a spin coating method. The thicknesses, refractive index, energy of the optical gap (Eoptg), activation energy of surface electrical conductivity (Esa) and pre-exponential factor (σ0) of the thin layers of 5 were measured and they are close to those found for related oxygen glass. Finally, GBO 5 was also used as an additive to printing ink and a thin film of 5 was prepared by the gravure printing technique.