mRNA expression of specific HER ligands and their association with clinical outcome in patients with metastatic breast cancer treated with trastuzumab

Oncol Lett. 2022 Jan;23(1):23. doi: 10.3892/ol.2021.13141. Epub 2021 Nov 17.

Abstract

Prognostic and predictive biomarkers are being studied for the diagnosis and treatment of breast cancer. The present study retrospectively assessed the mRNA expression of HER family receptor ligands and of other potential prognostic biomarkers and their association with time to progression (TTP), survival and clinicopathological characteristics in patients with metastatic breast cancer (MBC) treated with trastuzumab. A total of 145 tumour tissue samples were analysed. mRNA expression analysis of the transcripts of interest was performed and the association of these markers with selected clinicopathological parameters was examined. HER2 status was centrally re-evaluated. Only 67.6% of patients were truly HER2-positive according to the central HER2 re-evaluation. Heparin binding epidermal growth factor (EGF)-like growth factor, transforming growth factor β1 (TGFB1) and thyroid hormone receptor α (THRA) mRNA expression was higher in HER2-positive patients (P=0.026, P<0.001 and P<0.001). Insulin-like growth factor binding protein 4 was correlated with retinoic acid receptor α, TGFB1 and THRA (rho=0.45, rho=0.60 and rho=0.45). In HER2-positive patients, high neuregulin 1 and high betacellulin were unfavourable factors for TTP [hazard ratio (HR) = 1.78, P=0.040 and HR=2.00, P=0.043, respectively]. In patients with de novo MBC, high EGF expression was associated with a non-significant prolongation of TTP (HR=0.52, P=0.080) and significantly longer survival (HR=0.40, P=0.020). The present study examined clinical and biological implications of specific genes and it was concluded that their expression has an impact on the outcome of trastuzumab-treated patients with MBC.

Keywords: HER ligands; HER2; biomarkers; metastatic breast cancer; trastuzumab.

Grants and funding

The study was supported by a research grant from F. Hoffmann-La Roche and by an internal HeCOG research grant (HE TRANS_BR).