Bonding of Flexible Membranes for Perfusable Vascularized Networks Patch

Tissue Eng Regen Med. 2022 Apr;19(2):363-375. doi: 10.1007/s13770-021-00409-1. Epub 2021 Dec 6.

Abstract

Background: In vitro generation of three-dimensional vessel network is crucial to investigate and possibly improve vascularization after implantation in vivo. This work has the purpose of engineering complex tissue regeneration of a vascular network including multiple cell-type, an extracellular matrix, and perfusability for clinical application.

Methods: The two electrospun membranes bonded with the vascular network shape are cultured with endothelial cells and medium flow through the engineered vascular network. The flexible membranes are bonded by amine-epoxy reaction and examined the perfusability with fluorescent beads. Also, the perfusion culture for 7 days of the endothelial cells is compared with static culture on the engineered vascular network membrane.

Results: The engineered membranes are showed perfusability through the vascular network, and the perfused network resulted in more cell proliferation and variation of the shear stress-related genes expression compared to the static culture. Also, for the generation of the complex vascularized network, pericytes are co-cultured with the engineered vascular network, which results in the Collagen I is expressed on the outer surface of the engineered structure.

Conclusion: This study is showing the perfusable in vitro engineered vascular network with electrospun membrane. In further, the 3D vascularized network module can be expected as a platform for drug screening and regenerative medicine.

Keywords: Complex tissue generation; Membrane bonding; Perfusion culture; Vascular networks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Coculture Techniques
  • Endothelial Cells*
  • Extracellular Matrix
  • Regenerative Medicine / methods
  • Tissue Engineering* / methods