Chemical cross-linking with mass spectrometry (XL-MS) has emerged as a useful technique for interrogating protein structures and interactions. When combined with quantitative proteomics strategies, protein conformational and interaction dynamics can be probed. Quantitative XL-MS has been demonstrated with the use of stable isotopes incorporated metabolically or into the cross-linker molecules. Isotope-labeled cross-linkers have primarily utilized deuterium and rely on MS1-based quantitation of precursor ion extracted ion chromatograms. Recently the development and application of isobaric quantitative protein interaction reporter (iqPIR) cross-linkers were reported, which utilize 13C and 15N isotope labels. Quantitation is accomplished using relative fragment ion isotope abundances in tandem mass spectra. Here we describe the synthesis and initial evaluation of a multiplexed set of iqPIR molecules, allowing for up to six cross-linked samples to be quantified simultaneously. To analyze data for such cross-linkers, the two-channel mode of iqPIR quantitative analysis was adapted to accommodate any number of channels with defined ion isotope peak mass offsets. The summed ion peak intensities in the overlapping channel isotope envelopes are apportioned among the channels to minimize the difference with respect to the predicted ion isotope envelopes. The result is accurate and reproducible relative quantitation enabling direct comparison among six differentially labeled cross-linked samples. The approach described here is generally extensible for the iqPIR strategy, accommodating future iqPIR reagent design, and enables large-scale in vivo quantitative XL-MS investigation of the interactome.