A data-driven approach to optimal beam/arc angle selection for liver stereotactic body radiation therapy treatment planning

Quant Imaging Med Surg. 2021 Dec;11(12):4797-4806. doi: 10.21037/qims-21-169.

Abstract

Background: Stereotactic body radiation therapy (SBRT) for liver cancer has shown promising therapeutic effects. Effective treatment relies not only on the precise delivery provided by image-guided radiation therapy (IGRT) but also high dose gradient formed around the treatment volume to spare functional liver tissue, which is highly dependent on the beam/arc angle selection. In this study, we aim to develop a decision support model to learn human planner's beam navigation approach for beam angle/arc angle selection for liver SBRT.

Methods: A total of 27 liver SBRT/HIGRT patients (10 IMRT, 17 VMAT/DCA) were included in this study. A dosimetric budget index was defined for each beam angle/control point considering dose penetration through the patient body and liver tissue. Optimal beam angle setting (beam angles for IMRT and start/terminal angle for VMAT/DCA) was determined by minimizing the loss function defined as the sum of total dosimetric budget index and beam span penalty function. Leave-one-out validation was exercised on all 27 cases while weighting coefficients in the loss function was tuned in nested cross validation. To compare the efficacy of the model, a model plan was generated using automatically generated beam setting while retaining the original optimization constraints in the clinical plan. Model plan was normalized to the same planning target volume (PTV) V100% as the clinical plans. Dosimetric endpoints including PTV D98%, D2%, liver V20Gy and total MU were compared between two plan groups. Wilcoxon Signed-Rank test was performed with the null hypothesis being that no difference exists between two plan groups.

Results: Beam setting prediction was instantaneous. Mean PTV D98% was 91.3% and 91.3% (P=0.566), while mean PTV D2% was 107.9% and 108.1% (P=0.164) for clinical plan and model plan respectively. Liver V20Gy showed no significant difference (P=0.590) with 23.3% for clinical plan and 23.4% for the model plan. Total MU is comparable (P=0.256) between the clinical plan (avg. 2,389.6) and model plan (avg. 2,319.6).

Conclusions: The evidence driven beam setting model yielded similar plan quality as hand-crafted clinical plan. It is capable of capturing human's knowledge in beam selection decision making. This model could facilitate decision making for beam angle selection while eliminating lengthy trial-and-error process of adjusting beam setting during liver SBRT treatment planning.

Keywords: Bioinformatics; artificial intelligence; beam angle prediction; decision support; knowledge modeling; machine learning; radiation therapy; treatment planning.