netCRS: Network-based comorbidity risk score for prediction of myocardial infarction using biobank-scaled PheWAS data

Pac Symp Biocomput. 2022:27:325-336.

Abstract

The polygenic risk score (PRS) can help to identify individuals' genetic susceptibility for various diseases by combining patient genetic profiles and identified single-nucleotide polymorphisms (SNPs) from genome-wide association studies. Although multiple diseases will usually afflict patients at once or in succession, conventional PRSs fail to consider genetic relationships across multiple diseases. Even multi-trait PRSs, which take into account genetic effects for more than one disease at a time, fail to consider a sufficient number of phenotypes to accurately reflect the state of disease comorbidity in a patient, or are biased in terms of the traits that are selected. Thus, we developed novel network-based comorbidity risk scores to quantify associations among multiple phenotypes from phenome-wide association studies (PheWAS). We first constructed a disease-SNP heterogeneous multi-layered network (DS-Net), which consists of a disease network (disease-layer) and SNP network (SNP-layer). The disease-layer describes the population-level interactome from PheWAS data. The SNP-layer was constructed according to linkage disequilibrium. Both layers were attached to transform the information from a population-level interactome to individual-level inferences. Then, graph-based semi-supervised learning was applied to predict possible comorbidity scores on disease-layer for each subject. The SNP-layer serves as receiving individual genotyping data in the scoring process, and the disease-layer serves as the propagated output for an individual's multiple disease comorbidity scores. The possible comorbidity scores were combined by logistic regression, and it is denoted as netCRS. The DS-Net was constructed from UK Biobank PheWAS data, and the individual genetic profiles were collected from the Penn Medicine Biobank. As a proof-of-concept study, myocardial infarction (MI) was selected to compare netCRS with the PRS with pruning and thresholding (PRS-PT). The combined model (netCRS + PRS-PT + covariates) achieved an AUC improvement of 6.26% compared to the (PRS-PT + covariates) model. In terms of risk stratification, the combined model was able to capture the risk of MI up to approximately eight-fold higher than that of the low-risk group. The netCRS and PRS-PT complement each other in predicting high-risk groups of patients with MI. We expect that using these risk prediction models will allow for the development of prevention strategies and reduction of MI morbidity and mortality.

MeSH terms

  • Biological Specimen Banks
  • Computational Biology
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study*
  • Humans
  • Multifactorial Inheritance
  • Myocardial Infarction* / epidemiology
  • Myocardial Infarction* / genetics
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Risk Factors