Minimum variance (MV) beamforming improves resolution and reduces sidelobes when compared to delay-and-sum (DAS) beamforming for photoacoustic imaging (PAI). However, some level of sidelobe signal and incoherent clutter persist degrading MV PAI quality. Here, an adaptive beamforming algorithm (PSAPMV) combining MV formulation and sub-aperture processing is proposed. In PSAPMV, the received channel data are split into two complementary nonoverlapping sub-apertures and beamformed using MV. A weighting matrix based on similarity between sub-aperture beamformed images was derived and multiplied with the full aperture MV image resulting in suppression of sidelobe and incoherent clutter in the PA image. Numerical simulation experiments with point targets, diffuse inclusions and microvasculature networks are used to validate PSAPMV. Quantitative evaluation was done in terms of main-lobe-to-side-lobe ratio, full width at half maximum (FWHM), contrast ratio (CR) and generalized contrast-to-noise ratio (gCNR). PSAPMV demonstrated improved beamforming performance both qualitatively and quantitatively. PSAPMV had higher resolution (FWHM =0.19 mm) than MV (0.21 mm) and DAS (0.22mm) in point target simulations, better target detectability (gCNR =0.99) than MV (0.89) and DAS (0.84) for diffuse inclusions and improved contrast (CR in microvasculature simulation, DAS = 15.38, MV = 22.42, PSAPMV = 51.74 dB).