Left ventricular remodeling is a mechanism common to various cardiovascular diseases affecting myocardial morphology. It can be often overlooked in clinical practice since the parameters routinely employed in the diagnostic process (e.g., the ejection fraction) mainly focus on evaluating volumetric aspects. Nevertheless, the integration of a quantitative assessment of structural modifications can be pivotal in the early individuation of this pathology. In this work, we propose an approach based on functional data analysis to evaluate myocardial contractility. A functional representation of ventricular shape is introduced, and functional principal component analysis and depth measures are used to discriminate healthy subjects from those affected by left ventricular hypertrophy. Our approach enables the integration of higher informative content compared to the traditional clinical parameters, allowing for a synthetic representation of morphological changes in the myocardium, which could be further explored and considered for future clinical practice implementation.