This paper analyzes local field potentials (LFP) from 10 human subjects to discover frequency-dependent biomarkers of cognitive conflict. We utilize cortical and sub-cortical LFP recordings from the subjects during a cognitive task known as the Multi-Source Interference Task (MSIT). We decode the task engagement and discover biomarkers that may facilitate closed-loop neuromodulation to enhance cognitive control. First, we show that spectral power features in predefined frequency bands can be used to classify task and non-task segments with a median accuracy of 88.1%. Here the features are first ranked using the Bayes Factor and then used as inputs to subject-specific linear support vector machine classifiers. Second, we show that theta (4-8 Hz) band, and high gamma (65-200 Hz) band oscillations are modulated during the task performance. Third, by isolating time-series from specific brain regions of interest, we observe that a subset of the dorsolateral prefrontal cortex features is sufficient to decode the task states. The paper shows that cognitive control evokes robust neurological signatures, especially in the prefrontal cortex (PFC).