KDM6B promotes activation of the oncogenic CDK4/6-pRB-E2F pathway by maintaining enhancer activity in MYCN-amplified neuroblastoma

Nat Commun. 2021 Dec 10;12(1):7204. doi: 10.1038/s41467-021-27502-2.

Abstract

The H3K27me2/me3 histone demethylase KDM6B is essential to neuroblastoma cell survival. However, the mechanism of KDM6B action remains poorly defined. We demonstrate that inhibition of KDM6B activity 1) reduces the chromatin accessibility of E2F target genes and MYCN, 2) selectively leads to an increase of H3K27me3 but a decrease of the enhancer mark H3K4me1 at the CTCF and BORIS binding sites, which may, consequently, disrupt the long-range chromatin interaction of MYCN and E2F target genes, and 3) phenocopies the transcriptome induced by the specific CDK4/6 inhibitor palbociclib. Overexpression of CDK4/6 or Rb1 knockout confers neuroblastoma cell resistance to both palbociclib and the KDM6 inhibitor GSK-J4. These data indicate that KDM6B promotes an oncogenic CDK4/6-pRB-E2F pathway in neuroblastoma cells via H3K27me3-dependent enhancer-promoter interactions, providing a rationale to target KDM6B for high-risk neuroblastoma.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Cyclin-Dependent Kinase 4 / genetics
  • Cyclin-Dependent Kinase 4 / metabolism*
  • Epigenomics
  • Gene Expression Regulation, Neoplastic
  • Histone Demethylases / metabolism
  • Humans
  • Jumonji Domain-Containing Histone Demethylases / genetics
  • Jumonji Domain-Containing Histone Demethylases / metabolism*
  • N-Myc Proto-Oncogene Protein / genetics
  • N-Myc Proto-Oncogene Protein / metabolism*
  • Neuroblastoma / genetics*
  • Neuroblastoma / metabolism*
  • Oncogenes / genetics*
  • Transcription Factors

Substances

  • MYCN protein, human
  • N-Myc Proto-Oncogene Protein
  • Transcription Factors
  • Histone Demethylases
  • Jumonji Domain-Containing Histone Demethylases
  • KDM6B protein, human
  • CDK4 protein, human
  • Cyclin-Dependent Kinase 4