The Nuclear Factor-Y (NF-Y) transcription factor (TF), which includes three distinct subunits (NF-YA, NF-YB and NF-YC), is known to manipulate various aspects of plant growth, development, and stress responses. Although the NF-Y gene family was well studied in many species, little is known about their functions in potato. In this study, a total of 37 potato NF-Y genes were identified, including 11 StNF-YAs, 20 StNF-YBs, and 6 StNF-YCs. The genetic features of these StNF-Y genes were investigated by comparing their evolutionary relationship, intron/exon organization and motif distribution pattern. Multiple alignments showed that all StNF-Y proteins possessed clearly conserved core regions that were flanked by non-conserved sequences. Gene duplication analysis indicated that nine StNF-Y genes were subjected to tandem duplication and eight StNF-Ys arose from segmental duplication events. Synteny analysis suggested that most StNF-Y genes (33 of 37) were orthologous to potato's close relative tomato (Solanum lycopersicum L.). Tissue-specific expression of the StNF-Y genes suggested their potential roles in controlling potato growth and development. The role of StNF-Ys in regulating potato responses to abiotic stress (ABA, drought and salinity) was also confirmed: twelve StNF-Y genes were up-regulated and another two were down-regulated under different abiotic treatments. In addition, genes responded differently to pathogen challenges, suggesting that StNF-Y genes may play distinct roles under certain biotic stress. In summary, insights into the evolution of NF-Y family members and their functions in potato development and stress responses are provided.
Keywords: Biotic/abiotic stress; Evolution; NF-Y transcription factor; Potato.
Copyright © 2021 Elsevier B.V. All rights reserved.