Cross-sectional cycle threshold values reflect epidemic dynamics of COVID-19 in Madagascar

Epidemics. 2022 Mar:38:100533. doi: 10.1016/j.epidem.2021.100533. Epub 2021 Nov 29.

Abstract

As the national reference laboratory for febrile illness in Madagascar, we processed samples from the first epidemic wave of COVID-19, between March and September 2020. We fit generalized additive models to cycle threshold (Ct) value data from our RT-qPCR platform, demonstrating a peak in high viral load, low-Ct value infections temporally coincident with peak epidemic growth rates estimated in real time from publicly-reported incidence data and retrospectively from our own laboratory testing data across three administrative regions. We additionally demonstrate a statistically significant effect of duration of time since infection onset on Ct value, suggesting that Ct value can be used as a biomarker of the stage at which an individual is sampled in the course of an infection trajectory. As an extension, the population-level Ct distribution at a given timepoint can be used to estimate population-level epidemiological dynamics. We illustrate this concept by adopting a recently-developed, nested modeling approach, embedding a within-host viral kinetics model within a population-level Susceptible-Exposed-Infectious-Recovered (SEIR) framework, to mechanistically estimate epidemic growth rates from cross-sectional Ct distributions across three regions in Madagascar. We find that Ct-derived epidemic growth estimates slightly precede those derived from incidence data across the first epidemic wave, suggesting delays in surveillance and case reporting. Our findings indicate that public reporting of Ct values could offer an important resource for epidemiological inference in low surveillance settings, enabling forecasts of impending incidence peaks in regions with limited case reporting.

Keywords: Africa; COVID-19; Cross-sectional data; Cycle threshold value; LMIC; Madagascar.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • COVID-19* / epidemiology
  • Cross-Sectional Studies
  • Humans
  • Madagascar / epidemiology
  • Retrospective Studies
  • SARS-CoV-2