Wild birds are common reservoirs of Salmonella enterica. Wild birds carrying resistant S. enterica may pose a risk to public health as they can spread the resistant bacteria across large spatial scales within a short time. Here, we whole-genome sequenced 375 S. enterica strains from wild birds collected in 41 U.S. states during 1978-2019 to examine bacterial resistance to antibiotics and heavy metals. We found that Typhimurium was the dominant S. enterica serovar, accounting for 68.3% (256/375) of the bird isolates. Furthermore, the proportions of the isolates identified as multi-antimicrobial resistant (multi-AMR: resistant to at least three antimicrobial classes) or multi-heavy metal resistant (multi-HMR: resistant to at least three heavy metals) were both 1.87% (7/375). Interestingly, all the multi-resistant S. enterica (n = 12) were isolated from water birds or raptors; none of them was isolated from songbirds. Plasmid profiling demonstrated that 75% (9/12) of the multi-resistant strains carried resistance plasmids. Our study indicates that wild birds do not serve as important reservoirs of multi-resistant S. enterica strains. Nonetheless, continuous surveillance for bacterial resistance in wild birds is necessary because the multi-resistant isolates identified in this study also showed close genetic relatedness with those from humans and domestic animals.
© 2021 Society for Applied Microbiology and John Wiley & Sons Ltd.