Syntactic model-based human body 3D reconstruction and event classification via association based features mining and deep learning

PeerJ Comput Sci. 2021 Nov 19:7:e764. doi: 10.7717/peerj-cs.764. eCollection 2021.

Abstract

The study of human posture analysis and gait event detection from various types of inputs is a key contribution to the human life log. With the help of this research and technologies humans can save costs in terms of time and utility resources. In this paper we present a robust approach to human posture analysis and gait event detection from complex video-based data. For this, initially posture information, landmark information are extracted, and human 2D skeleton mesh are extracted, using this information set we reconstruct the human 2D to 3D model. Contextual features, namely, degrees of freedom over detected body parts, joint angle information, periodic and non-periodic motion, and human motion direction flow, are extracted. For features mining, we applied the rule-based features mining technique and, for gait event detection and classification, the deep learning-based CNN technique is applied over the mpii-video pose, the COCO, and the pose track datasets. For the mpii-video pose dataset, we achieved a human landmark detection mean accuracy of 87.09% and a gait event recognition mean accuracy of 90.90%. For the COCO dataset, we achieved a human landmark detection mean accuracy of 87.36% and a gait event recognition mean accuracy of 89.09%. For the pose track dataset, we achieved a human landmark detection mean accuracy of 87.72% and a gait event recognition mean accuracy of 88.18%. The proposed system performance shows a significant improvement compared to existing state-of-the-art frameworks.

Keywords: 2D to 3D reconstruction; Convolutional neural network; Gait event classification; Human posture analysis; Landmark detection; Silhouette optimization; Synthetic model.

Grants and funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (No. 2018R1D1A1A02085645). Also, this work was supported by the Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) (Project Number: 202012D05-02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.