Purpose: Understanding the value of genetic screening and testing for monogenic disorders requires high-quality, methodologically robust economic evaluations. This systematic review sought to assess the methodological quality among such studies and examined opportunities for improvement.
Methods: We searched PubMed, Cochrane, Embase, and Web of Science for economic evaluations of genetic screening/testing (2013-2019). Methodological rigor and adherence to best practices were systematically assessed using the British Medical Journal checklist.
Results: Across the 47 identified studies, there were substantial variations in modeling approaches, reporting detail, and sophistication. Models ranged from simple decision trees to individual-level microsimulations that compared between 2 and >20 alternative interventions. Many studies failed to report sufficient detail to enable replication or did not justify modeling assumptions, especially for costing methods and utility values. Meta-analyses, systematic reviews, or calibration were rarely used to derive parameter estimates. Nearly all studies conducted some sensitivity analysis, and more sophisticated studies implemented probabilistic sensitivity/uncertainty analysis, threshold analysis, and value of information analysis.
Conclusion: We describe a heterogeneous body of work and present recommendations and exemplar studies across the methodological domains of (1) perspective, scope, and parameter selection; (2) use of uncertainty/sensitivity analyses; and (3) reporting transparency for improvement in the economic evaluation of genetic screening/testing.
Keywords: Cost-effectiveness; Economic evaluation; Genetic screening; Genetic testing; Systematic review.
Copyright © 2021. Published by Elsevier Inc.