Patient stem cell-derived models enable imaging of complex disease phenotypes and the development of scalable drug discovery platforms. Current preclinical methods for assessing cellular activity do not, however, capture the full intricacies of disease-induced disturbances and instead typically focus on a single parameter, which impairs both the understanding of disease and the discovery of effective therapeutics. Here, we describe a cloud-based image processing and analysis platform that captures the intricate activity profile revealed by GCaMP fluorescence recordings of intracellular calcium changes and enables the discovery of molecules that correct 153 parameters that define the amyotrophic lateral sclerosis motor neuron disease phenotype. In a high-throughput screen, we identified compounds that revert the multiparametric disease profile to that found in healthy cells, a novel and robust measure of therapeutic potential quite distinct from unidimensional screening. This platform can guide the development of therapeutics that counteract the multifaceted pathological features of diseased cellular activity.