A detailed experimental study on reversible photo-induced intramolecular charge separation is presented based on nuclear magnetic resonance detection of chemically induced dynamic nuclear polarization. From variation of such polarization with the external magnetic field, the coupling constants of isotropic and anisotropic hyperfine interactions at individual 13C sites are measured in the short-lived charge separated state of dyad molecules composed of donor-bridge-acceptor parts. The objects of study were rigid donor-bridge-acceptor dyads, consisting of triarylamine as a donor, naphthalene diimide as an acceptor, and a meta-conjugated diethynylbenzene fragment as a bridge. By systematic variation of side groups in the bridging moiety, their influence on the electron withdrawing strength is traced. In combination with similar data for the 1H positions obtained previously for the same compounds [I. Zhukov et al., J. Chem. Phys. 152, 014203 (2020)], our results provide a reliable basis for the determination of the spin density distribution in the charge separated state of such dyads.