As the number of older adults increases, so does the pressure on health care systems due to age-related disorders. Attempts to reduce cognitive decline have focused on individual interventions such as exercise or diet, with limited success. This study adopted a different approach by investigating the impact of combined daily activities on memory decline. We used data from the National Institute of Aging's Health and Retirement Study to explore two new questions: does combining activities affect memory decline, and if yes, does this impact change across the lifespan? We created a new machine learning model using 33 daily activities and involving 3210 participants. Our results showed that the effect of combined activities on memory decline was stronger than any individual activity's impact. Moreover, this effect increased with age, whereas the importance of historical factors such as education, and baseline memory decreased. The present findings point out the importance of selecting multiple, diverse activities for older adults as they age. These results could have a significant impact on aging health policies promoting new programs such as social prescribing.
Keywords: big data; cognitive decline; daily activities; healthy aging; machine learning.