Hypothesis: In situ grown layered double hydroxide (LDH) is commonly used one of the anticorrosion ways for metal materials; Due to the dense growth of LDH on the metal surface, its special layered structure can effectively delay the corrosion rate of metal.
Methods: In this study, we use a hydrothermal method to successfully grow Mg-Fe LDH film on steel substrates based on self-supplied Fe3+ ions. The films were characterized by X-ray diffraction, scanning electron microscopy, and X-ray energy dispersive spectrometry. The potential corrosion resistance of the obtained Mg-Fe LDH film was confirmed using electrochemical impedance spectroscopy and polarization curves.
Findings: After systematic adjustment and parameter optimization, it was found that Mg-Fe LDH film exhibited the best growth morphology and comprehensive performance with an initial pH value of 10, Mg2+/urea ratio of 1:4 and reaction time of 12 h. The SEM and electrochemical results further demonstrated that Mg-Fe LDH film play a good protection effect on carbon steel surface. This study provides an important reference for the processing of anticorrosion LDHs film.
Keywords: Corrosion resistance; Hydrothermal method; Layered double hydroxide; Mg-Fe film.
Copyright © 2021 Elsevier Inc. All rights reserved.