This research comprises a comparative study of the properties, rhl genes expression, and structural difference in rhamnolipids produced under different oxygen conditions via Pseudomonas sp. CH1. The critical micelle concentration (CMC) of rhamnolipids produced under aerobic conditions (RAO) was 100 mg/L. In contrast, rhamnolipids produced under anaerobic conditions (RNO) had a low CMC of 40 mg/L. RNO comprised six rhamnolipids homologs, and the proportion of mono-rhamnolipids was up to 87.83%; meanwhile, the percent ratio of di-rhamnolipids and mono-rhamnolipids in RAO was 63.1:36.9. Additionally, diversified applications for solubilization of hydrophobic pollutants and reduction in heavy oil viscosity were investigated. The addition of RNO greatly enhanced the solubility of phenanthrene in water, from 1.29 mg/L to 193.14 mg/L, a 148.7-fold increase. Moreover, the viscosity of heavy oil decreased by over 90% for both kinds of rhamnolipids, whereas RAO effectively reduced the viscosity even at a low temperature (10 °C). The findings of this study provide insights into the versatile potential applications of rhamnolipids produced under different oxygen conditions.
Keywords: Di-rhamnolipids; Different oxygen conditions; Hydrophobic pollutants; Mono-rhamnolipids; Viscosity.
Copyright © 2021 Elsevier B.V. All rights reserved.