Cyanidin-3-O-glucoside (C3G) is a kind of water-soluble pigment widely existing in many plants. It has strong antioxidant and anti-inflammatory activities. However, C3G cannot exist stably for a long time because of the phenolic hydroxyl groups in its structure. Liposome technology could improve the stability and bioavailability of compounds. Based on our previous studies, C3G liposomes prepared by ethanol injection method have a certain stability in two weeks of storage. In this study, THP-1 macrophages treated with C3G and C3G liposomes can reduce the levels of inflammatory-related factors, such as tumor necrosis factor-a (TNF-a), interleukin (IL)-1β, IL-6, and IL-8, stimulated by lipopolysaccharide (LPS). Further studies showed that the LPS induction could increase the level of phosphorylated nuclear transcription factor NF-κB and phosphorylated IkBa, while C3G and C3G liposomes could inhibit the expression of phosphorylated proteins. Moreover, C3G and C3G liposomes could protect macrophages from apoptosis. In conclusion, C3G prepared by liposome technology exhibits anti-inflammatory activity, which provides a theoretical basis for the food industry to study functional food.
Keywords: THP‐1 Macrophage; anti‐inflammatory activity; apoptosis; cyanidin‐3‐O‐glucoside; liposome.
© 2021 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC.