9-Amino-acridinium chloride N,N-di-methyl-formamide monosolvate, C13H11N2 +Cl-·C3H7NO, crystallizes in the monoclinic space group P21/c. The salt was crystallized from N,N-di-methyl-formamide. The asymmetric unit consists of two C13H11N2 +Cl- formula units. The 9-amino-acridinium (9-AA) mol-ecules are protonated with the proton on the N atom of the central ring. This N atom is connected to an N,N-di-methyl-formamide mol-ecule by a hydrogen bond. The H atoms of the amino groups create short contacts with two chloride ions. The 9-AA cations in adjacent layers are oriented in an anti-parallel manner. The mol-ecules are linked via a network of multidirectional π-π inter-actions between the 9-AA rings, and the whole lattice is additionally stabilized by electrostatic inter-actions between ions.
Keywords: 9-aminoacridinium; crystal structure; hydrogen bonds.
© Fritsky et al. 2021.