Temporal profiles, source analysis, and health risk assessments of parent polycyclic aromatic hydrocarbons (PPAHs) and their derivatives (NPAHs, OPAHs, ClPAHs, and BrPAHs) in PM2.5 and PM1.0 from the eastern coastal region of China: Urban coastal area versus coastal background area

Chemosphere. 2022 Apr:292:133341. doi: 10.1016/j.chemosphere.2021.133341. Epub 2021 Dec 17.

Abstract

The eastern coastal region of China is the area with the highest emission of PAHs in China. Therefore, understanding the sources and health risk of parent polycyclic aromatic hydrocarbons (PPAHs) and their derivatives in eastern coastal cities of China is the main basis for air pollution control. In this study, we measured the concentrations of 18 parent PAHs, 17 nitrated PAHs, 7 oxygenated PAHs, 8 chlorinated PAHs, and 13 brominated PAHs in PM1.0 and PM2.5 samples collected at an urban coastal city site and a coastal background site in 2019. We analyzed the temporal distribution, molecular composition, and sources and performed health risk assessments for both winter and summer samples. The average concentration of the PPAHs and their derivatives (all 63 compounds combined) in the PM1.0 samples accounted for 75.57% of the PAHs concentration in PM2.5 samples. The average concentration of PM2.5- and PM1.0- bound PPAHs in winter was 114.70 times higher than in summer, and their derivatives was 27.51 times. Both the combined concentrations of the 18 PPAHs and the combined concentrations of the 45 derivatives were higher in the coastal city compared to the background site during the winter (1.90 and 1.48 times, respectively), but they were comparable during the summer. The positive matrix factorization analysis indicated that the compounds mainly originated from coal/biomass combustion, industrial sources, vehicle emissions, and secondary formation. In addition, the concentration-weighted trajectories model revealed that the PAHs were mainly emitted locally in Shandong Province and surrounding areas, such as Hebei Province, Henan Province, and Bohai Sea. The compounds 1-NPYR, 2+9-BrPHE, 9,10-Cl2PHE, and 1-ClPYR dominantly contributed to the derivatives of TEQ during the winter due to their high concentrations or the high TEFs of these compounds.

Keywords: Health risk assessment; PAH derivatives; PM(2.5) and PM(1.0); PMF and CWT.

MeSH terms

  • Air Pollutants* / analysis
  • China
  • Environmental Monitoring
  • Particulate Matter / analysis
  • Polycyclic Aromatic Hydrocarbons* / analysis
  • Risk Assessment
  • Seasons

Substances

  • Air Pollutants
  • Particulate Matter
  • Polycyclic Aromatic Hydrocarbons