Contributions of Cathepsin A and Carboxylesterase 1 to the Hydrolysis of Tenofovir Alafenamide in the Human Liver, and the Effect of CES1 Genetic Variation on Tenofovir Alafenamide Hydrolysis

Drug Metab Dispos. 2022 Mar;50(3):243-248. doi: 10.1124/dmd.120.000323. Epub 2021 Dec 21.

Abstract

The prodrug tenofovir alafenamide (TAF) is a first-line antiviral agent for the treatment of chronic hepatitis B infection. TAF activation involves multiple steps, and the first step is an ester hydrolysis reaction catalyzed by hydrolases. This study was to determine the contributions of carboxylesterase 1 (CES1) and cathepsin A (CatA) to TAF hydrolysis in the human liver. Our in vitro incubation studies showed that both CatA and CES1 catalyzed TAF hydrolysis in a pH-dependent manner. At their physiologic pH environment, the activity of CatA (pH 5.2) was approximately 1,000-fold higher than that of CES1 (pH 7.2). Given that the hepatic protein expression of CatA was approximately 200-fold lower than that of CES1, the contribution of CatA to TAF hydrolysis in the human liver was estimated to be much greater than that of CES1, which is contrary to the previous perception that CES1 is the primary hepatic enzyme hydrolyzing TAF. The findings were further supported by a TAF incubation study with the CatA inhibitor telaprevir and the CES1 inhibitor bis-(p-nitrophenyl) phosphate. Moreover, an in vitro study revealed that the CES1 variant G143E (rs71647871) is a loss-of-function variant for CES1-mediated TAF hydrolysis. In summary, our results suggest that CatA may play a more important role in the hepatic activation of TAF than CES1. Additionally, TAF activation in the liver could be affected by CES1 genetic variation, but the magnitude of impact appears to be limited due to the major contribution of CatA to hepatic TAF activation. SIGNIFICANCE STATEMENT: Contrary to the general perception that carboxylesterase 1 (CES1) is the major enzyme responsible for tenofovir alafenamide (TAF) hydrolysis in the human liver, the present study demonstrated that cathepsin A may play a more significant role in TAF hepatic hydrolysis. Furthermore, the CES1 variant G143E (rs71647871) was found to be a loss-of-function variant for CES1-mediated TAF hydrolysis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alanine / genetics
  • Alanine / metabolism
  • Carboxylesterase / metabolism
  • Carboxylic Ester Hydrolases* / metabolism
  • Cathepsin A / genetics
  • Cathepsin A / metabolism
  • Genetic Variation / genetics
  • Humans
  • Hydrolysis
  • Liver* / metabolism
  • Tenofovir / analogs & derivatives

Substances

  • Tenofovir
  • Carboxylic Ester Hydrolases
  • CES1 protein, human
  • Carboxylesterase
  • Cathepsin A
  • tenofovir alafenamide
  • Alanine